All functions
|
add_derived_column()
|
Add a new column using data from other columns |
add_trend()
|
Adds a trend variable to a data set |
contemporaneous_correlations_plot()
|
Plot the contemporaneous correlations summary |
convert_to_graph()
|
Convert best model to graph |
generate_network()
|
Return a JSON array of network data of a fitting model specific to hoegekis.nl |
generate_networks()
|
Return a JSON array of network data of a fitting model |
group_by()
|
Split up a data set into different subsets |
impute_dataframe()
|
Impute missing values in a data.frame using EM imputation |
impute_missing_values()
|
Impute missing values |
load_dataframe()
|
Returns an av_state for data loaded from a data.frame |
load_file()
|
Load a data set from a .sav, .dta, or .csv file |
order_by()
|
Order the rows in a data set |
plot_barchart()
|
Plots a barchart of manual_score and the av_scores |
print_accepted_models()
|
Print a list of accepted models after a call to var_main |
print_best_models()
|
Prints the best model from the list of accepted models |
print_rejected_models()
|
Print a list of rejected models after a call to var_main |
select_range()
|
Select a subset of rows of a data set to be retained |
select_relevant_columns()
|
Select and return the relevant columns |
select_relevant_rows()
|
Select and return the relevant rows |
set_timestamps()
|
Add dummy variables for weekdays and day parts |
store_file()
|
Export a modified data set as an SPSS readable .sas file |
var_info()
|
Print summary information and tests for a VAR model estimation |
var_main()
|
Determine possibly optimal models for Vector Autoregression |
var_summary()
|
Print the output of var_main |
vargranger_plot()
|
Plot the Granger causality summary |
visualize()
|
Visualize columns of the data set |
visualize_residuals()
|
Visualize the residuals of a VAR model |