All functions

add_derived_column()

Add a new column using data from other columns

add_trend()

Adds a trend variable to a data set

contemporaneous_correlations_plot()

Plot the contemporaneous correlations summary

convert_to_graph()

Convert best model to graph

generate_network()

Return a JSON array of network data of a fitting model specific to hoegekis.nl

generate_networks()

Return a JSON array of network data of a fitting model

group_by()

Split up a data set into different subsets

impute_dataframe()

Impute missing values in a data.frame using EM imputation

impute_missing_values()

Impute missing values

load_dataframe()

Returns an av_state for data loaded from a data.frame

load_file()

Load a data set from a .sav, .dta, or .csv file

order_by()

Order the rows in a data set

plot_barchart()

Plots a barchart of manual_score and the av_scores

print_accepted_models()

Print a list of accepted models after a call to var_main

print_best_models()

Prints the best model from the list of accepted models

print_rejected_models()

Print a list of rejected models after a call to var_main

select_range()

Select a subset of rows of a data set to be retained

select_relevant_columns()

Select and return the relevant columns

select_relevant_rows()

Select and return the relevant rows

set_timestamps()

Add dummy variables for weekdays and day parts

store_file()

Export a modified data set as an SPSS readable .sas file

var_info()

Print summary information and tests for a VAR model estimation

var_main()

Determine possibly optimal models for Vector Autoregression

var_summary()

Print the output of var_main

vargranger_plot()

Plot the Granger causality summary

visualize()

Visualize columns of the data set

visualize_residuals()

Visualize the residuals of a VAR model